Optimal control of thrust force for delamination-free drilling in glass-fiber-reinforced plastic laminates

Author:

Singh Amrinder Pal1,Sharma Manu1,Singh Inderdeep2

Affiliation:

1. UIET, Panjab University, Chandigarh, India

2. MIED, Indian Institute of Technology, Roorkee, India

Abstract

Damage due to delamination is an important issue during drilling in glass-fiber-reinforced plastic composite laminates. Feed-rate during drilling is the most critical parameter. High feed-rate during drilling results in high thrust force on the composite laminate. In this work, dynamics of drilling in glass-fiber-reinforced plastic composite laminates are captured in the form of third-order state-space model between thrust force and feed-rate. Optimal control is then used to control the thrust force generated during drilling. Research has revealed that there is a critical limit on thrust force during drilling in composite laminate below which no delamination occurs. This critical thrust force profile is used in this work as reference in the optimal controller to ensure delamination-free drilling. Present controller precisely tracks the given critical thrust force reference profile and gives optimal feed-rate profile. The glass-fiber-reinforced plastic composite laminate is then drilled at this optimal feed-rate profile to obtain delamination-free holes. Delamination around the holes is quantified in the form of a delamination factor. Experimental results show that the control strategy is efficient and effective in preventing drilling-induced delamination in glass-fiber-reinforced plastic composite laminates.

Funder

All India Council for Technical Education under TEQIP-II

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3