Stratospheric chlorine processing after the 2020 Australian wildfires derived from satellite data

Author:

Wang Peidong1ORCID,Solomon Susan1ORCID,Stone Kane1ORCID

Affiliation:

1. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

The 2019 to 2020 Australian summer wildfires injected an amount of organic gases and particles into the stratosphere unprecedented in the satellite record since 2002, causing large unexpected changes in HCl and ClONO 2 . These fires provided a novel opportunity to evaluate heterogeneous reactions on organic aerosols in the context of stratospheric chlorine and ozone depletion chemistry. It has long been known that heterogeneous chlorine (Cl) activation occurs on the polar stratospheric clouds (PSCs; liquid and solid particles containing water, sulfuric acid, and in some cases nitric acid) that are found in the stratosphere, but these are only effective for ozone depletion chemistry at temperatures below about 195 K (i.e., largely in the polar regions during winter). Here, we develop an approach to quantitatively assess atmospheric evidence for these reactions using satellite data for both the polar (65 to 90°S) and the midlatitude (40 to 55°S) regions. We show that heterogeneous reactions apparently even happened at temperatures at 220 K during austral autumn on the organic aerosols present in 2020 in both regions, in contrast to earlier years. Further, increased variability in HCl was also found after the wildfires, suggesting diverse chemical properties among the 2020 aerosols. We also confirm the expectation based upon laboratory studies that heterogeneous Cl activation has a strong dependence upon water vapor partial pressure and hence atmospheric altitude, becoming much faster close to the tropopause. Our analysis improves the understanding of heterogeneous reactions that are important for stratospheric ozone chemistry under both background and wildfire conditions.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3