Investigation of ion characteristics in CO2laser irradiating preformed tin-droplet plasma

Author:

Chen Z.,Wang X.,Zuo D.,Wang J.

Abstract

AbstractComparative study of CO2laser-produced tin-droplet plasma with and without pre-pulse laser has been presented. A pre-pulse laser and the CO2laser was combined and focused to tin-droplet with a diameter of 180 µm. The emitted Sn ions were detected by several Faraday cups to obtain angular distribution of ions in the laser-produced tin-droplet plasma. The influence of pre-pulse laser energy and delay time between pumping laser and pre-pulse laser on the ion characteristics was investigated. It is illustrated that ion average kinetic energy from CO2laser-produced plasma (LPP) can be reduced when the tin-droplet target has been replaced by the preformed Sn plasma. The obtained optimal delay time with the lowest ion average kinetic energy is about hundreds of nanoseconds. The ion time-of-flight spectra show a twin peak structure in laser-irradiating preformed Sn plasma. And a superimposed Maxwell–Boltzmann (MB) distribution is proposed to describe this twin peak ion time-of-flight spectra. The fitting results quite agree with the raw ion time-of-flight spectra in current experiment. Then, the fitted plasma temperatures and mass-center velocities with various delay times in laser-irradiating preformed plasma are obtained, and the fitted plasma temperatures can be comparable with ion average kinetic energy in double-pulse LPP, which justified the rationality using this superimposed MB distribution.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3