The mechanism of vortex connection at a free surface

Author:

ZHANG CHIONG,SHEN LIAN,YUE DICK K. P.

Abstract

Vortex connections at the surface are fundamental and prominent features in free-surface vortical flows. To understand the detailed mechanism of such connection, we consider, as a canonical problem, the laminar vortex connections at a free surface when an oblique vortex ring impinges upon that surface. We perform numerical simulations of the Navier–Stokes equations with viscous free-surface boundary conditions. It is found that the key to understanding the mechanism of vortex connection at a free surface is the surface layers: a viscous layer resulting from the dynamic zero-stress boundary conditions at the free surface, and a thicker blockage layer which is due to the kinematic boundary condition at the surface. In the blockage layer, the vertical vorticity component increases due to vortex stretching and vortex turning (from the transverse vorticity component). The vertical vorticity is then transported to the free surface through viscous diffusion and vortex stretching in the viscous layer leading to increased surface-normal vorticity. These mechanisms take place at the aft-shoulder regions of the vortex ring. Connection at the free surface is different from that at a free-slip wall owing to the generation of surface secondary vorticity. We study the components of this surface vorticity in detail and find that the presence of a free surface accelerates the connection process. We investigate the connection time scale and its dependence on initial incidence angle, Froude and Reynolds numbers. It is found that a criterion based on the streamline topology provides a precise definition for connection time, and may be preferred over existing definitions, e.g. those based on free-surface elevation or net circulation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3