Reconstruction of three-dimensional turbulent flow structures using surface measurements for free-surface flows based on a convolutional neural network

Author:

Xuan AnqingORCID,Shen LianORCID

Abstract

A model based on a convolutional neural network (CNN) is designed to reconstruct the three-dimensional turbulent flows beneath a free surface using surface measurements, including the surface elevation and surface velocity. Trained on datasets obtained from the direct numerical simulation of turbulent open-channel flows with a deformable free surface, the proposed model can accurately reconstruct the near-surface flow field and capture the characteristic large-scale flow structures away from the surface. The reconstruction performance of the model, measured by metrics such as the normalised mean squared reconstruction errors and scale-specific errors, is considerably better than that of the traditional linear stochastic estimation (LSE) method. We further analyse the saliency maps of the CNN model and the kernels of the LSE model and obtain insights into how the two models utilise surface features to reconstruct subsurface flows. The importance of different surface variables is analysed based on the saliency map of the CNN, which reveals knowledge about the surface–subsurface relations. The CNN is also shown to have a good generalisation capability with respect to the Froude number if a model trained for a flow with a high Froude number is applied to predict flows with lower Froude numbers. The results presented in this work indicate that the CNN is effective regarding the detection of subsurface flow structures and by interpreting the surface–subsurface relations underlying the reconstruction model, the CNN can be a promising tool for assisting with the physical understanding of free-surface turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference92 articles.

1. Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades

2. Vahdat, A. & Kautz, J. 2020 NVAE: a deep hierarchical variational autoencoder. In Proceedings of the 34th International Conference on Neural Information Processing Systems, (NeurIPS 2020), Vancouver, BC, Canada, (ed. H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan & H. Lin) pp. 19667–19679. Curran Associates.

3. What is observable from wall data in turbulent channel flow?

4. Visual interpretability for deep learning: a survey

5. Sensing the turbulent large-scale motions with their wall signature

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3