Vortex imprints on a free surface as proxy for surface divergence

Author:

Babiker Omer M.ORCID,Bjerkebæk Ivar,Xuan AnqingORCID,Shen LianORCID,Ellingsen Simen Å.ORCID

Abstract

In turbulence near a free surface, strong vortices attach to the surface, creating surface imprints visible as nearly circular ‘dimples’. By studying these imprints in direct numerical simulation (DNS) data we make two observations. First, the imprints of surface-attached vortices can be very effectively distinguished from other turbulent surface features using two physical features: they are nearly circular in shape, and persist for a long time compared with other pertinent time scales. Secondly, the instantaneous number of surface dimples from surface-attached vortices in an area, $N(t)$ , is intimately related to its mean-square surface divergence, $\beta ^2(t)$ . We develop a simple and physically transparent computer vision procedure which, using the properties of low eccentricity and longevity, detects and tracks vortices from their surface features only, with sensitivity and accuracy of $90\,\%$ or better. We compare $N(t)$ and $\beta ^2(t)$ , finding a normalised cross-correlation of $0.90$ , with changes in $N$ lagging around $0.8T_\infty$ behind those in $\beta ^2$ ( $T_\infty$ is an integral time scale), confirming the common observation that vortices are spawned by strong upwelling events where $\beta ^2$ is large. These findings suggest that the rate of mass flux across the surface, being closely related to surface divergence, can be estimated remotely in some natural flows using visible free-surface dimples as proxy.

Funder

Norges Forskningsråd

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3