Flow transitions of head-on vortex ring collisions with contaminated air–water interfaces

Author:

New T. H.1ORCID,Yeo K. W. B.1ORCID,Koh J. Y.1,Long J.1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798

Abstract

An experimental study was conducted on head-on collisions of Re = 2000 and 4000 vortex rings upon air–water interfaces to study the vortex dynamics and the effects of different vortex ring Reynolds numbers on the key vortex flow mechanisms. Unfiltered tap water was used where surface contaminants were present; hence, the interfacial stress levels are lower but not entirely zero like an idealized free surface. Results demonstrate that the vortex dynamics involve first, the resulting secondary and tertiary vortex rings transitioning into wavy states, before their upper loops disconnect/reconnect to the interface to form U-shaped vortex loops along the inner and outer peripheries of the primary vortex ring, respectively, in an alternating pattern. Second, tertiary vortex loops entangle around the primary vortex ring to produce counter-rotating vortex pairs that reorganize themselves along the primary vortex ring outer periphery, between the primary vortex ring and secondary vortex loops, as well as hairpin-like structures that aid ejection of primary vortex ring momentum. Third, secondary vortex loops rotate toward the collision axis before their lower segments are entrained by the primary vortex ring. A higher Reynolds number primary vortex ring would confer additional flow changes, such as a higher wave number for the secondary and tertiary vortex rings/loops, pairings of secondary vortex loops “side-arms” that reduce their instances by about half and formations of Tsai–Widnall–Moore–Saffman instabilities induced by flow perturbations. Finally, vortex flow models proposed to explain the flow mechanism at different flow stages are found to be in good agreements with the experimental visualizations.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3