Coupling effect analysis between the central nervous system and the CPG network with proprioception

Author:

He Bin,Lu Qiang,Wang Zhipeng

Abstract

SUMMARYHuman rhythmic movement is generated by central pattern generators (CPGs), and their application to robot control has attracted interest of many scientists. But the coupling relationship between the central nervous system and the CPG network with external inputs is still not unveiled. According to biological experiment results, the CPG network is controlled by the neural system; in other words, the interaction between the central nervous system and the CPG network can control human movement effectively. This paper offers a complex human locomotion model, which illustrates the coupling relationship between the central nervous system and the CPG network with proprioception. Based on Matsuoka's CPG model (K. Matsuoka, Biol. Cybern. 52(6), 367–376 (1985)), the stability and robustness of the CPG network are analyzed with external inputs. In order to simulate the coupling relationship, the Radial Basis Function (RBF) neural network is used to simulate the cerebral cortex, and the Credit-Assignment Cerebellar Model Articulation Controller algorithm is employed to realize the locomotion mode conversion. A seven-link biped robot is chosen to simulate the walking gait. The main discoveries include: (1) the output of a new CPG network, which is stable and robust, can be treated as proprioception. Proprioception provides the central nervous system with the information about all joint angles; (2) analysis on a new locomotion model reveals that the cerebral cortex can modulate CPG parameters, leading to adjustment in walking gait.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference27 articles.

1. Autonomously clearing obstacles using the biological flexor reflex in a quadrupedal robot;Zhang;Robotica,2008

2. An effective trajectory generation method for bipedal walking

3. X. Zhang , Biological-Inspired Rhythmic Motion & Environmental Adaptability for Quadruped Robot, PhD Dissertation, Department Of Mechanical Engineering, Tsinghua University, Beijing, China (2004) pp. 41–62.

4. Sustained oscillations generated by mutually inhibiting neurons with adaptation

5. Prediction of reservoir sensitivity using RBF neural network with trainable radial basis function

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The REFLEX Exoskeleton;Springer Theses;2024

2. A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients;Journal of NeuroEngineering and Rehabilitation;2022-10-08

3. Parallel Spine Design and CPG Motion Test of Quadruped Robot;International Journal of Pattern Recognition and Artificial Intelligence;2019-08-26

4. Motion Simulation of Ionic Liquid Gel Soft Actuators Based on CPG Control;Computational Intelligence and Neuroscience;2019-02-26

5. An Experimental Analysis of Stability in Human Walking;Journal of Bionic Engineering;2018-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3