Parallel Spine Design and CPG Motion Test of Quadruped Robot

Author:

Wang Binrui1,Liu Yixuan1ORCID,Li Zhongwen1,Chen Dijian1,Ma Ruizi1,Wang Ling1

Affiliation:

1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, P. R. China

Abstract

The spine of mammals aids in the stability of locomotion. Central Pattern Generators (CPGs) located in spinal cord can rapidly provide a rhythmic output signal during loss of sensory feedback on the basis of a simulated quadruped agent. In this paper, active spine of quadruped robot is shown to be extremely effective in motion. An active spine model based on the Parallel Kinematic Mechanism (PKM) system and biological phenomena is described. The general principles involved in constructing a neural network coupled with limbs and spine to solve specific problems are discussed. A CPG mathematical model based on Hopf nonlinear oscillators produces rhythmic signal during locomotion is described, where many parameters to be solved must be formulated in terms of desired stability, often subject to vertical stability analysis. Our simulations demonstrate that active spine with setting reasonable CPG parameters can reduce unnecessary lateral displacement during trot gait, improving the stability of quadruped robot. In addition, we demonstrate that physical prototype mechanism provides a framework which shows correctness of simulation, and stability can thus be easily embodied within locomotion.

Funder

Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Dynamic Locomotion of a Quadruped Robot with Spinal;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

2. Modeling and control system design of 6-DOF bionic parallel mechanism with compliant modules;Transactions of the Institute of Measurement and Control;2023-05-21

3. A Mechanism and Control Design of Flexible Spine driven by Pneumatic Artificial Muscles;2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI);2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3