Modeling and control system design of 6-DOF bionic parallel mechanism with compliant modules

Author:

Li Ruyue1,Zhu Yaguang1ORCID,Zhou Shuangjie1,He Zhimin1,Sun Junli1,Liu Shaokui1

Affiliation:

1. Key Laboratory of Road Construction Technology and Equipment, Ministry of Education, Chang’an University, China

Abstract

Quadrupeds are capable of dynamic movements such as fast running and long-distance jumping due to their flexible and elastic torso structures. In this paper, a compliant parallel mechanism is proposed as a bionic torso to simulate the diversified behaviors and agile locomotion of the tetrapod torso. The spring module is incorporated into the limb of the parallel mechanism to absorb external shocks, cushion, and dampen vibrations, thus improving the compliance performance of the bionic torso. For the compliant parallel mechanism, its kinematics and kinetics are analyzed, and the overall electromechanical system and control framework are devised. The multidimensional damping dynamic characteristics of the proposed mechanism are qualitatively analyzed by simplifying the limb into a spring–mass damping system. The parallel mechanism with compliant spring modules absorbs external forces to different degrees with different stiffness coefficients to avoid damage to the structure by external impacts. The parallel mechanism with different initial positions exhibits the inherent variable stiffness characteristics of the mechanism. The parallel mechanism simulates the diverse behavior of the animal torso, with independent and synthesized locomotor behavior of the six underlying motion patterns. Simulations and experiments demonstrated that the compliant parallel mechanism is effective in vibration damping and cushioning, with a rapid response and small steady-state error. The motion of the compliant parallel mechanism in one direction and the motion of the integrated multi-degree of freedom (DOF) are confirmed and exhibited in the behavioral experiment.

Funder

Scientific Innovation Practice Project of Postgraduates of Chang’an University

the Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Instrumentation

Reference37 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3