Multi-objective optimal design based kineto-elastostatic performance for thedeltaparallel mechanism

Author:

Bounab Belkacem

Abstract

SUMMARYThis paper addresses the dimensional-synthesis-based kineto-elastostatic performance optimization of thedeltaparallel mechanism. For the manipulator studied here, the main consideration for the optimization criteria is to find the maximum regular workspace where the robotdeltamust posses high stiffness and dexterity. The dexterity is a kinetostatic quality measure that is related to joint's stiffness and control accuracy. In this study, we use the Castigliano's energetic theorem for modeling the elastostatic behavior of thedeltaparallel robot, which can be evaluated by the mechanism's response to external applied wrench under static equilibrium. In the proposed formulation of the design problem, global structure's stiffness and global dexterity are considered together for the simultaneous optimization. Therefore, we formulate the design problem as a multi-objective optimization one and, we use evolutionary genetic algorithms to find all possible trade-offs among multiple cost functions that conflict with each other. The proposed design procedure is developed through the implementation of thedeltarobot and, numerical results show the effectiveness of the proposed design method to enhancing kineto-elastostatic performance of the studied manipulator's structure.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference32 articles.

1. R. Clavel , “Delta, a Fast Robot with Parallel Geometry,” Proceedings of the 18th International Symposium on Industrial Robots, Lausanne (1988) pp. 91–100.

2. Kinematic Isotropy and the Optimum Design of Parallel Manipulators

3. An Interval Analysis Based Study for the Design and the Comparison of Three-Degrees-of-Freedom Parallel Kinematic Machines

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3