Affiliation:
1. Institute for Aerospace Studies University of Toronto Toronto, Canada M5S 1A4
2. Department of Mechanical Engineering & Centre for Intelligent Machines McGill University 817 Sherbrooke Street West Montreal, Canada H3A 2K6
Abstract
The differential kinematic equations (DKE) of parallel manip ulators usually involve two Jacobian matrices that, depending on the role they play in the kinetostatic transformation between the joint and Cartesian variables, are commonly referred to as the forward and the inverse Jacobians. In this article, we make use of the special structure of these Jacobians to define a set of conditions under which a parallel manipulator can be rendered isotropic. These conditions are general, and pro vide a systematic method for the optimum kinematic design of parallel manipulators, with or without introducing structural constraints. The application of the proposed conditions is illus trated in detail through a few examples, one of which pertains to the design of a 6-DOF isotropic parallel manipulator.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
167 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献