Inverse kinematic solutions of 6-D.O.F. biopolymer segments

Author:

Kim Jin Seob,Chirikjian Gregory S.

Abstract

SUMMARYWe present two methods to find all the possible conformations of short six degree-of-freedom segments of biopolymers which satisfy end constraints in position and orientation. One of our methods is motivated by inverse kinematic solution techniques which have been developed for “general” 6R serial robotic manipulators. However, conventional robot kinematics methods are not directly applicable to the geometry of polymers, which can be treated as a degenerate case where all the “link lengths” are zero. Here, we propose a method which extends the elimination method of Kohli and Osvatic. This method can be applied directly to the geometry of biopolymers. We also propose a heuristic method based on a Lie-group-theoretic description. In this method, we utilize inverse iterations of the Jacobian matrix to obtain all conformations which satisfy end constraints. This can be easily implemented for both the general 6R manipulator and polymers. Although the extended elimination method is computationally faster than the Jacobian method, in cases where some of the joint angles are 180° (i.e., where the elimination method fails), we combine these two methods effectively to obtain the full set of inverse kinematic solutions. We demonstrate our approach with several numerical examples.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3