Stable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches

Author:

SHEARER M.,GRAY J. M. N. T.,THORNTON A. R.

Abstract

Dense, dry granular avalanches are very efficient at sorting the larger particles towards the free surface of the flow, and finer grains towards the base, through the combined processes of kinetic sieving and squeeze expulsion. This generates an inversely graded particle-size distribution, which is fundamental to a variety of pattern formation mechanisms, as well as subtle size-mobility feedback effects, leading to the formation of coarse-grained lateral levees that create channels in geophysical flows, enhancing their run-out. In this paper we investigate some of the properties of a recent model [Gray, J. M. N. T. & Thornton, A. R. (2005) A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. 461, 1447–1473]; [Thornton, A. R., Gray, J. M. N. T. & Hogg, A. J. (2006) A three-phase mixture theory for particle size segregation in shallow granular free-surface flows. J. Fluid. Mech. 550, 1–25] for the segregation of particles of two sizes but the same density in a shear flow typical of shallow avalanches. The model is a scalar conservation law in space and time, for the volume fraction of smaller particles, with non-constant coefficients depending on depth within the avalanche. It is proved that for steady flow from an inlet, complete segregation occurs beyond a certain finite distance down the slope, no matter what the mixture at the inlet. In time-dependent flow, dynamic shock waves can develop; they are interfaces separating different mixes of particles. Shock waves are shown to be stable if and only if there is a greater concentration of large particles above the interface than below. Constructions with shocks and rarefaction waves are demonstrated on a pair of physically relevant initial boundary value problems, in which a region of all small particles is penetrated from the inlet by either a uniform mixture of particles or by a layer of small particles over a layer of large particles. In both cases, and under a linear shear flow, solutions are constructed for all time and shown to have similar structure for all choices of parameters.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3