Breaking size segregation waves and particle recirculation in granular avalanches

Author:

THORNTON A. R.,GRAY J. M. N. T.

Abstract

Particle-size segregation is a common feature of dense gravity-driven granular free-surface flows, where sliding and frictional grain–grain interactions dominate. Provided that the diameter ratio of the particles is not too large, the grains segregate by a process called kinetic sieving, which, on average, causes the large particles to rise to the surface and the small grains to sink to the base of the avalanche. When the flowing layer is brought to rest this stratification is often preserved in the deposit and is known by geologists as inverse grading. Idealized experiments with bi-disperse mixtures of differently sized grains have shown that inverse grading can be extremely sharp on rough beds at low inclination angles, and may be modelled as a concentration jump or shock. Several authors have developed hyperbolic conservation laws for segregation that naturally lead to a perfectly inversely graded state, with a pure phase of coarse particles separated from a pure phase of fines below, by a sharp concentration jump. A generic feature of these models is that monotonically decreasing sections of this concentration shock steepen and eventually break when the layer is sheared. In this paper, we investigate the structure of the subsequent breaking, which is important for large-particle recirculation at the bouldery margins of debris flows and for fingering instabilities of dry granular flows. We develop an exact quasi-steady travelling wave solution for the structure of the breaking/recirculation zone, which consists of two shocks and two expansion fans that are arranged in a ‘lens’-like structure. A high-resolution shock-capturing numerical scheme is used to investigate the temporal evolution of a linearly decreasing shock towards a steady-state lens, as well as the interaction of two recirculation zones that travel at different speeds and eventually coalesce to form a single zone. Movies are available with the online version of the paper.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3