Time-dependent solutions for particle-size segregation in shallow granular avalanches

Author:

Gray J.M.N.T1,Shearer M2,Thornton A.R1

Affiliation:

1. School of Mathematics, University of ManchesterOxford Road, Manchester M13 9PL, UK

2. Department of Mathematics & Center for Research in Scientific Computation, North Carolina State UniversityRaleigh, NC 27695-8205, USA

Abstract

Rapid shallow granular free-surface flows develop in a wide range of industrial and geophysical flows, ranging from rotating kilns and blenders to rock-falls, snow slab-avalanches and debris-flows. Within these flows, grains of different sizes often separate out into inversely graded layers, with the large particles on top of the fines, by a process called kinetic sieving. In this paper, a recent theory is used to construct exact time-dependent two-dimensional solutions for the development of the particle-size distribution in inclined chute flows. The first problem assumes the flow is initially homogeneously mixed and is fed at the inflow with homogeneous material of the same concentration. Concentration shocks develop during the flow and the particles eventually separate out into inversely graded layers sufficiently far downstream. Sections with a monotonically decreasing shock height, between these layers, steepen and break in finite time. The second problem assumes that the material is normally graded, with the small particles on top of the coarse ones. In this case, shock waves, concentration expansions, non-centred expanding shock regions and breaking shocks develop. As the parameters are varied, nonlinearity leads to fundamental topological changes in the solution, and, in simple-shear, a logarithmic singularity prevents a steady-state solution from being attained.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference24 articles.

1. Fundamental powder mixing mechanisms

2. Granular Motion in a Rotary Kiln: the Transition from Avalanching to Rolling

3. Segregation modeling of particle rapid gravity flow

4. Gray J. M. N. T. & Chugunov V. A. Submitted. Particle-size segregation and diffusive remixing in shallow granular avalanches. J. Fluid Mech .

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3