Self-similar mean dynamics in turbulent wall flows

Author:

Klewicki J. C.

Abstract

AbstractThis study investigates how and why dynamical self-similarities emerge with increasing Reynolds number within the canonical wall flows beyond the transitional regime. An overarching aim is to advance a mechanistically coherent description of turbulent wall-flow dynamics that is mathematically tractable and grounded in the mean dynamical equations. As revealed by the analysis of Fife, Klewicki & Wei (J. Discrete Continuous Dyn. Syst.A, vol. 24, 2009, pp. 781–807), the equations that respectively describe the mean dynamics of turbulent channel, pipe and boundary layer flows formally admit invariant forms. These expose an underlying self-similar structure. In all cases, two kinds of dynamical self-similarity are shown to exist on an internal domain that, for all Reynolds numbers, extends from$O(\nu / {u}_{\tau } )$to$O(\delta )$, where$\nu $is the kinematic viscosity,${u}_{\tau } $is the friction velocity and$\delta $is the half-channel height, pipe radius, or boundary layer thickness. The simpler of the two self-similarities is operative on a large outer portion of the relevant domain. This self-similarity leads to an explicit analytical closure of the mean momentum equation. This self-similarity also underlies the emergence of a logarithmic mean velocity profile. A more complicated kind a self-similarity emerges asymptotically over a smaller domain closer to the wall. The simpler self-similarity allows the mean dynamical equation to be written as a closed system of nonlinear ordinary differential equations that, like the similarity solution for the laminar flat-plate boundary layer, can be numerically integrated. The resulting similarity solutions are demonstrated to exhibit nearly exact agreement with direct numerical simulations over the solution domain specified by the theory. At the Reynolds numbers investigated, the outer similarity solution is shown to be operative over a domain that encompasses${\sim }40\hspace{0.167em} \% $of the overall width of the flow. Other properties predicted by the theory are also shown to be well supported by existing data.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3