The logarithmic variance of streamwise velocity and conundrum in wall turbulence

Author:

Hwang YongyunORCID,Hutchins Nicholas,Marusic IvanORCID

Abstract

The logarithmic dependence of streamwise turbulence intensity has been observed repeatedly in recent experimental and direct numerical simulation data. However, its spectral counterpart, a well-developed $k^{-1}$ spectrum ( $k$ is the spatial wavenumber in a wall-parallel direction), has not been convincingly observed from the same data. In the present study, we revisit the spectrum-based attached eddy model of Perry and co-workers, who proposed the emergence of a $k^{-1}$ spectrum in the inviscid limit, for small but finite $z/\delta$ and for finite Reynolds numbers ( $z$ is the wall-normal coordinate, and $\delta$ is the outer length scale). In the upper logarithmic layer (or inertial sublayer), a reexamination reveals that the intensity of the spectrum must vary with the wall-normal location at order of $z/\delta$ , consistent with the early observation argued with ‘incomplete similarity’. The streamwise turbulence intensity is subsequently calculated, demonstrating that the existence of a well-developed $k^{-1}$ spectrum is not a necessary condition for the approximate logarithmic wall-normal dependence of turbulence intensity – a more general condition is the existence of a premultiplied power-spectral intensity of $O(1)$ for $O(1/\delta ) < k < O(1/z)$ . Furthermore, it is shown that the Townsend–Perry constant must be weakly dependent on the Reynolds number. Finally, the analysis is semi-empirically extended to the lower logarithmic layer (or mesolayer), and a near-wall correction for the turbulence intensity is subsequently proposed. All the predictions of the proposed model and the related analyses/assumptions are validated with high-fidelity experimental data (Samie et al., J. Fluid Mech., vol. 851, 2018, pp. 391–415).

Funder

Engineering and Physical Sciences Research Council

Australian Research Council

Leverhulme Trust

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3