A theory for turbulent pipe and channel flows

Author:

WOSNIK MARTIN,CASTILLO LUCIANO,GEORGE WILLIAM K.

Abstract

A theory for fully developed turbulent pipe and channel flows is proposed which extends the classical analysis to include the effects of finite Reynolds number. The proper scaling for these flows at finite Reynolds number is developed from dimensional and physical considerations using the Reynolds-averaged Navier–Stokes equations. In the limit of infinite Reynolds number, these reduce to the familiar law of the wall and velocity deficit law respectively.The fact that both scaled profiles describe the entire flow for finite values of Reynolds number but reduce to inner and outer profiles is used to determine their functional forms in the ‘overlap’ region which both retain in the limit. This overlap region corresponds to the constant, Reynolds shear stress region (30 < y+ < 0.1R+ approximately, where R+ = u*R/v). The profiles in this overlap region are logarithmic, but in the variable y + a where a is an offset. Unlike the classical theory, the additive parameters, Bi, Bo, and log coefficient, 1/κ, depend on R+. They are asymptotically constant, however, and are linked by a constraint equation. The corresponding friction law is also logarithmic and entirely determined by the velocity profile parameters, or vice versa.It is also argued that there exists a mesolayer near the bottom of the overlap region approximately bounded by 30 < y+ < 300 where there is not the necessary scale separation between the energy and dissipation ranges for inertially dominated turbulence. As a consequence, the Reynolds stress and mean flow retain a Reynolds number dependence, even though the terms explicitly containing the viscosity are negligible in the single-point Reynolds-averaged equations. A simple turbulence model shows that the offset parameter a accounts for the mesolayer, and because of it a logarithmic behaviour in y applies only beyond y+ > 300, well outside where it has commonly been sought.The experimental data from the superpipe experiment and DNS of channel flow are carefully examined and shown to be in excellent agreement with the new theory over the entire range 1.8 × 102 < R+ < 5.3 × 105. The Reynolds number dependence of all the parameters and the friction law can be determined from the single empirical function, H = A/(ln R+)α for α > 0, just as for boundary layers. The Reynolds number dependence of the parameters diminishes very slowly with increasing Reynolds number, and the asymptotic behaviour is reached only when R+ [Gt ] 105.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3