A critical analysis of turbulence dissipation in near-wall flows, based on stereo particle image velocimetry and direct numerical simulation data

Author:

George William K.ORCID,Stanislas MichelORCID,Foucaut Jean MarcORCID,Cuvier ChristopheORCID,Laval Jean PhilippeORCID

Abstract

An experiment was performed using stereo particle image velocimetry (SPIV) in the Laboratoire de Mécanique des Fluides de Lille boundary layer facility to determine all the derivative moments needed to estimate the average dissipation rate of the turbulence kinetic energy $\epsilon = 2 \nu \langle {\mathsf{s}}_{ij}{\mathsf{s}}_{ij} \rangle$ , where ${\mathsf{s}}_{ij}$ is the fluctuating strain rate and $\langle ~\rangle$ denotes ensemble averages. Also measured were all the moments of the full average deformation rate tensor, as well as all of the first, second and third fluctuating velocity moments except those involving pressure. The Reynolds number was $Re_\theta = 7634$ or $Re_\tau = 2598$ . The present paper gives the measured average dissipation, $\epsilon$ and the derivative moments comprising it. The results are compared with the earlier measurements of Balint, Wallace & Vukolavcevic (J. Fluid Mech., vol. 228, 1991, pp. 53–86) and Honkan & Andreopoulos (J. Fluid Mech., vol. 350, 1997, pp. 29–96) at lower Reynolds numbers and to new results from a plane channel flow DNS at comparable Reynolds number. Of special interest is the prediction by George & Castillo (Appl. Mech. Rev., vol. 50, 1997, pp. 689–729) and Wosnik, Castillo & George (J. Fluid Mech., vol. 421, 2000, pp. 115–145) that $\epsilon ^+ \propto {x_2^+}^{-1}$ for streamwise homogeneous flows and a nearly indistinguishable power law, $\epsilon \propto {x_2^+}^{\gamma -1}$ , for boundary layers. In spite of the modest Reynolds number, the predictions seem to be correct. Then the statistical character of the velocity derivatives is examined in detail, and a particular problem is identified with the breakdown of local homogeneity inside $x_2^+ = 100$ . A more general alternative for partially homogeneous turbulence flows is offered which is consistent with the observations. With the help of DNS, the spatial characteristics of the dissipation very near the wall are also examined in detail.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference62 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3