On the logarithmic mean profile

Author:

KLEWICKI J.,FIFE P.,WEI T.

Abstract

Elements of the first-principles-based theory of Weiet al. (J. Fluid Mech., vol. 522, 2005, p. 303), Fifeet al. (Multiscale Model. Simul., vol. 4, 2005a, p. 936;J. Fluid Mech., vol. 532, 2005b, p. 165) and Fife, Klewicki & Wei (J. Discrete Continuous Dyn. Syst., vol. 24, 2009, p. 781) are clarified and their veracity tested relative to the properties of the logarithmic mean velocity profile. While the approach employed broadly reveals the mathematical structure admitted by the time averaged Navier–Stokes equations, results are primarily provided for fully developed pressure driven flow in a two-dimensional channel. The theory demonstrates that the appropriately simplified mean differential statement of Newton's second law formally admits a hierarchy of scaling layers, each having a distinct characteristic length. The theory also specifies that these characteristic lengths asymptotically scale with distance from the wall over a well-defined range of wall-normal positions,y. Numerical simulation data are shown to support these analytical findings in every measure explored. The mean velocity profile is shown to exhibit logarithmic dependence (exact or approximate) when the solution to the mean equation of motion exhibits (exact or approximate) self-similarity from layer to layer within the hierarchy. The condition of pure self-similarity corresponds to a constant leading coefficient in the logarithmic mean velocity equation. The theory predicts and clarifies why logarithmic behaviour is better approximated as the Reynolds number gets large. An exact equation for the leading coefficient (von Kármán coefficient κ) is tested against direct numerical simulation (DNS) data. Two methods for precisely estimating the leading coefficient over any selected range ofyare presented. These methods reveal that the differences between the theory and simulation are essentially within the uncertainty level of the simulation. The von Kármán coefficient physically exists owing to an approximate self-similarity in the flux of turbulent force across an internal layer hierarchy. Mathematically, this self-similarity relates to the slope and curvature of the Reynolds stress profile, or equivalently the slope and curvature of the mean vorticity profile. The theory addresses how, why and under what conditions logarithmic dependence is approximated relative to the specific mechanisms contained within the mean statement of dynamics.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3