Vortex organization in the outer region of the turbulent boundary layer

Author:

ADRIAN R. J.,MEINHART C. D.,TOMKINS C. D.

Abstract

The structure of energy-containing turbulence in the outer region of a zero-pressure- gradient boundary layer has been studied using particle image velocimetry (PIV) to measure the instantaneous velocity fields in a streamwise-wall-normal plane. Experiments performed at three Reynolds numbers in the range 930 < Reθ < 6845 show that the boundary layer is densely populated by velocity fields associated with hairpin vortices. (The term ‘hairpin’ is here taken to represent cane, hairpin, horseshoe, or omega-shaped vortices and deformed versions thereof, recognizing these structures are variations of a common basic flow structure at different stages of evolution and with varying size, age, aspect ratio, and symmetry.) The signature pattern of the hairpin consists of a spanwise vortex core located above a region of strong second-quadrant fluctuations (u < 0 and v > 0) that occur on a locus inclined at 30–60° to the wall.In the outer layer, hairpin vortices occur in streamwise-aligned packets that propagate with small velocity dispersion. Packets that begin in or slightly above the buffer layer are very similar to the packets created by the autogeneration mechanism (Zhou, Adrian & Balachandar 1996). Individual packets grow upwards in the streamwise direction at a mean angle of approximately 12°, and the hairpins in packets are typically spaced several hundred viscous lengthscales apart in the streamwise direction. Within the interior of the envelope the spatial coherence between the velocity fields induced by the individual vortices leads to strongly retarded streamwise momentum, explaining the zones of uniform momentum observed by Meinhart & Adrian (1995). The packets are an important type of organized structure in the wall layer in which relatively small structural units in the form of three-dimensional vortical structures are arranged coherently, i.e. with correlated spatial relationships, to form much longer structures. The formation of packets explains the occurrence of multiple VITA events in turbulent ‘bursts’, and the creation of Townsend's (1958) large-scale inactive motions. These packets share many features of the hairpin models proposed by Smith (1984) and co-workers for the near-wall layer, and by Bandyopadhyay (1980), but they are shown to occur in a hierarchy of scales across most of the boundary layer.In the logarithmic layer, the coherent vortex packets that originate close to the wall frequently occur within larger, faster moving zones of uniform momentum, which may extend up to the middle of the boundary layer. These larger zones are the induced interior flow of older packets of coherent hairpin vortices that originate upstream and over-run the younger, more recently generated packets. The occurence of small hairpin packets in the environment of larger hairpin packets is a prominent feature of the logarithmic layer. With increasing Reynolds number, the number of hairpins in a packet increases.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1307 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3