Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection

Author:

Ng Chong ShenORCID,Ooi Andrew,Lohse DetlefORCID,Chung DanielORCID

Abstract

In thermal convection for very large Rayleigh numbers ($Ra$), the thermal and viscous boundary layers are expected to undergo a transition from a classical state to an ultimate state. In the former state, the boundary-layer thicknesses follow a laminar-like Prandtl–Blasius–Polhausen scaling, whereas in the latter, the boundary layers are turbulent with logarithmic corrections in the sense of Prandtl and von Kármán. Here, we report evidence of this transition via changes in the boundary-layer structure of vertical natural convection (VC), which is a buoyancy-driven flow between differentially heated vertical walls. The numerical dataset spans $Ra$ values from $10^{5}$ to $10^{9}$ and a constant Prandtl number value of $0.709$. For this $Ra$ range, the VC flow has been previously found to exhibit classical state behaviour in a global sense. Yet, with increasing $Ra$, we observe that near-wall higher-shear patches occupy increasingly larger fractions of the wall areas, which suggest that the boundary layers are undergoing a transition from the classical state to the ultimate shear-dominated state. The presence of streaky structures – reminiscent of the near-wall streaks in canonical wall-bounded turbulence – further supports the notion of this transition. Within the higher-shear patches, conditionally averaged statistics yield a logarithmic variation in the local mean temperature profiles, in agreement with the log law of the wall for mean temperature, and an $Ra^{0.37}$ effective power-law scaling of the local Nusselt number. The scaling of the latter is consistent with the logarithmically corrected $1/2$ power-law scaling predicted for ultimate thermal convection for very large $Ra$. Collectively, the results from this study indicate that turbulent and laminar-like boundary layer coexist in VC at moderate to high $Ra$ and this transition from the classical state to the ultimate state manifests as increasingly larger shear-dominated patches, consistent with the findings reported for Rayleigh–Bénard convection and Taylor–Couette flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference41 articles.

1. Turbulent Flows

2. Scaling in thermal convection: a unifying theory

3. New perspectives in turbulent Rayleigh–Bénard convection;Chillà;Eur. Phys. J. E,2012

4. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3