From classical to ultimate heat fluxes for convection at a vertical wall

Author:

Wells Andrew J.ORCID

Abstract

Convection from a buoyancy source distributed over a vertical wall has diverse applications, from the natural ventilation of buildings to the melting of marine-terminating glaciers which impacts on future sea level. A key challenge involves determining how the rate and mechanisms of turbulent heat transfer should be extrapolated across a range of scales. Ke et al. (J. Fluid Mech., vol. 964, 2023, A24) explore transitions in the turbulent flow dynamics using direct numerical simulation of a convective boundary layer at a heated vertical wall. A classical regime of heat transfer, consistent with previous laboratory experiments, gives way with increasing accumulation of buoyancy to an ultimate regime with enhanced heat transfer. The key to this transition lies in a near-wall sublayer, with a switch from laminar buoyancy-driven dynamics to a sublayer dominated by turbulence and shear instability from the mean flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3