Large-scale motions in a turbulent natural convection boundary layer immersed in a stably stratified environment

Author:

Maryada K.R.ORCID,Armfield S.W.ORCID,Dhopade P.ORCID,Norris S.E.ORCID

Abstract

This study investigates the coherence of turbulent fluctuations in a turbulent vertical natural convection boundary layer immersed in a stably stratified medium (turbulent buoyancy layer). A turbulent buoyancy layer of a fluid having a Prandtl number of $0.71$ at a Reynolds number of $800$ is numerically simulated using direct numerical simulation. The two-point correlations reveal that the streamwise velocity fluctuations are coherent over large streamwise distances, with the length scale of the streamwise coherence being greater than the boundary layer thickness. This is due to large-scale motions (LSMs), similar to the LSMs observed in canonical wall-bounded turbulence despite the stark differences in flow dynamics. Both high-speed (positive) and low-speed (negative) streamwise velocity fluctuations form LSMs, with their streamwise length scales increasing with increasing wall-normal distance. High-speed LSMs are composed of upwash flow with high temperatures, while low-speed LSMs are composed of downwash flow with low temperatures. Both high-speed and low-speed LSMs meander appreciably in the streamwise direction, with the degree of meandering being correlated with the sign of the spanwise velocity fluctuations. The LSMs exhibit coherence across significant wall-normal distances and contribute significantly to the turbulence production in the outer layer. Examining the one-dimensional energy spectra of the turbulent buoyancy layer shows that the LSMs are the dominant energy-containing motions, implying that the length scale of the energy-containing range is of the order of boundary layer thickness. Notably, wall-normal velocity, spanwise velocity and buoyancy fluctuations do not form LSMs with streamwise length scales comparable to streamwise velocity fluctuations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3