Mean velocity and temperature profiles in turbulent vertical convection

Author:

Li MinORCID,Jia PanORCID,Liu HaihuORCID,Jiao ZhenjunORCID,Zhang YangORCID

Abstract

In this study, mean velocity and temperature profiles for turbulent vertical convection (VC) confined in an infinite channel are investigated theoretically. The analysis starts from the governing equations of the thermal flow, with Reynolds shear stress and turbulent heat flux closed by the mixing length theory. Employing a three-sublayer description of the mean fields, the mean velocity and temperature profiles are found to be linear laws near the channel wall (viscosity-dominated sublayer), and they follow power laws close to the channel centre (turbulence-dominated sublayer). The characteristic scales of velocity, temperature and length in the present profiles arise naturally from the system normalisation, rather than from scaling analyses, thus ensuring a sound mathematical description. The derived profiles are verified fully via various literature data available in the classical regime; further, they are compared with the reported profiles, and the results indicate that the present profiles are the only ones with the ability to interpret data accurately from different sources, demonstrating much better versatility. Meanwhile, we provide analytical arguments showing that in the ultimate regime, the mean profiles in VC may remain in power laws, rather than the log laws inferred by analogy with Rayleigh–Bénard convection (RBC) systems. The power profiles recognised in this study are induced by the effect of buoyancy, which is in parallel with the mean flow in VC and contributes to the streamwise momentum transport, whereas in RBC systems, buoyancy is perpendicular to the mean flow, and does not influence the streamwise momentum transport, resulting in log profiles, being similar to the case of wall shear flows.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3