Multi-objective reservoir operation of the Ukai reservoir system using an improved Jaya algorithm

Author:

Kumar Vijendra1ORCID,Yadav S. M.2

Affiliation:

1. Civil Engineering Department, G H Raisoni College of Engineering and Management, Pune, Maharashtra, India

2. Civil Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India

Abstract

Abstract This paper introduces an effective and reliable approach based on a multi-population approach, namely the self-adaptive multi-population Jaya algorithm (SAMP-JA), to extract multi-purpose reservoir operation policies. The current research focused on two goals: minimizing irrigation deficits and maximizing hydropower generation. Three different models were formulated. The results were compared with those for an ordinary Jaya algorithm (JA), particle swarm optimization (PSO), and an invasive weed optimization (IWO) algorithm. In Model-1, the minimum irrigation deficit obtained by SAMP-JA and JA was 305092.99 . SAMP-JA was better than JA, PSO and IWO in terms of convergence. In Model-2, the maximum hydropower generation achieved by SAMP-JA, JA and PSO was 1723.50 . When comparing the average hydropower generation, SAMP-JA and PSO performed better than JA and IWO. In terms of convergence, SAMP-JA was better than PSO. In Model-3, a self-adaptive multi-population multi-objective Jaya algorithm (SAMP-MOJA) was better than multi-objective particle swarm optimization (MOPSO) and multi-objective Jaya algorithm (MOJA) in terms of maximum hydropower generation, and MOPSO was better than SAMP-MOJA and MOJA in terms of minimum irrigation deficiency. While comparing convergence, SAMP-MOJA was found to be better than MOPSO and MOJA. Overall, SAMP-JA was found to outperform JA, POS and IWO.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference33 articles.

1. Optimizing multi-reservoir operation rules: an improved HBMO approach;Journal of Hydroinformatics,2010

2. Large scale reservoir operation by constrained particle swarm optimization algorithms;Journal of Hydro-Environment Research,2012

3. The application of artificial bee colony and gravitational search algorithm in reservoir optimization;Water Resources Management,2016

4. Optimizing multireservoir operation: hybrid of bat algorithm and differential evolution;Journal of Water Resources Planning and Management,2016

5. Weed optimization algorithm for optimal reservoir operation;Journal of Irrigation and Drainage Engineering,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3