An Advanced Multi-Objective Ant Lion Algorithm for Reservoir Flood Control Optimal Operation

Author:

Ning Yawei12,Ren Minglei12,Guo Shuai3,Liang Guohua4,He Bin4,Liu Xiaoyang3,Tang Rong12

Affiliation:

1. China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, Beijing 100038, China

3. China Three Gorges Corporation, Yichang 443100, China

4. School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Multi-objective reservoir operation of reservoir flood control involves numerous factors and complex model solving, and exploring effective methods for solving the operation models has always been a hot topic in reservoir optimization operation research. The Multi-Objective Ant Lion Algorithm (MOALO) is an emerging heuristic intelligent optimization algorithm, but it has not yet been applied in reservoir optimization operation. Testing the effectiveness of this method on multi-objective reservoir scheduling and further improving the optimization performance of this method is of great significance for enhancing the overall benefits of reservoir operation. In this study, MOALO is applied to the optimal scheduling of reservoir flood control. To increase the search efficiency of MOLAO, the advanced MOALO method (AMOLAO) is proposed by reconstructing the search distribution in MOALO using a power function. Taking the Songshu Reservoir and Dongfeng Reservoir in the Fuzhou River Basin in Dalian City as an example, MOALO, AMOLAO, and other two traditional methods are applied for solving the multi-objective reservoir operation problem. Results show that the AMOALO method has high search efficiency, strong optimization ability, and good stability. AMOALO performs better than MOALO and the two traditional methods. The study provides an efficient method for solving the problems in multi-objective reservoir operation.

Funder

National Key Research and Development Program of China

Scientific Research Project Fund of China Three Gorges Corporation

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3