Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models

Author:

Kumar Vijendra1ORCID,Kedam Naresh2ORCID,Sharma Kul Vaibhav1,Mehta Darshan J.3ORCID,Caloiero Tommaso4ORCID

Affiliation:

1. Department of Civil Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India

2. Department of Thermal Engineering and Thermal Engines, Samara National Research University, Moskovskoye Shosse, 34, Samara 443086, Russia

3. Department of Civil Engineering, Dr. S. & S. S. Ghandhy Government Engineering College, Surat 395001, Gujarat, India

4. National Research Council of Italy, Institute for Agricultural and Forest Systems in Mediterranean (CNR-ISAFOM), 87036 Cosenza, Italy

Abstract

The management of water resources depends heavily on hydrological prediction, and advances in machine learning (ML) present prospects for improving predictive modelling capabilities. This study investigates the use of a variety of widely used machine learning algorithms, such as CatBoost, ElasticNet, k-Nearest Neighbors (KNN), Lasso, Light Gradient Boosting Machine Regressor (LGBM), Linear Regression (LR), Multilayer Perceptron (MLP), Random Forest (RF), Ridge, Stochastic Gradient Descent (SGD), and the Extreme Gradient Boosting Regression Model (XGBoost), to predict the river inflow of the Garudeshwar watershed, a key element in planning for flood control and water supply. The substantial engineering feature used in the study, which incorporates temporal lag and contextual data based on Indian seasons, leads it distinctiveness. The study concludes that the CatBoost method demonstrated remarkable performance across various metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2) values, for both training and testing datasets. This was accomplished by an in-depth investigation and model comparison. In contrast to CatBoost, XGBoost and LGBM demonstrated a higher percentage of data points with prediction errors exceeding 35% for moderate inflow numbers above 10,000. CatBoost established itself as a reliable method for hydrological time-series modelling, easily managing both categorical and continuous variables, and thereby greatly enhancing prediction accuracy. The results of this study highlight the value and promise of widely used machine learning algorithms in hydrology and offer valuable insights for academics and industry professionals.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3