Applying the new multi-objective algorithms for the operation of a multi-reservoir system in hydropower plants

Author:

Samare Hashemi Syed Mohsen,Robati Amir,Kazerooni Mohammad Ali

Abstract

AbstractThe optimal operation of the multi-purpose reservoir system is a difficult, and, sometimes, non-linear problem in multi-objective optimization. By simulating biological behavior, meta-heuristic algorithms scan the decision space and can offer a set of points as a group of solutions to a problem. Because it is essential to simultaneously optimize several competing objectives and consider relevant constraints as the main problem in many optimization problems, researchers have improved their ability to solve multi-objective problems by developing complementary multi-objective algorithms. Because the AHA algorithm is new, its multi-objective version, MOAHA (multi-objective artificial hummingbird algorithm), was used in this study and compared with two novel multi-objective algorithms, MOMSA and MOMGA. Schaffer and MMF1 were used as two standard multi-objective benchmark functions to gauge the effectiveness of the proposed method. Then, for 180 months, the best way to operate the reservoir system of the Karun River basin, which includes Karun 4, Karun 3, Karun 1, Masjed-e-Soleyman, and Gotvand Olia dams to generate hydropower energy, supply downstream demands (drinking, agriculture, industry, environmental), and control flooding was examined from September 2000 to August 2015. Four performance appraisal criteria (GD, S, Δ, and MS) and four evaluation indices (reliability, resiliency, vulnerability, and sustainability) were used in Karun's multi-objective multi-reservoir problem to evaluate the performance of the multi-objective algorithm. All three algorithms demonstrated strong capability in criterion problems by using multi-objective algorithms’ criteria and performance indicators. The large-scale (1800 dimensions) of the multi-objective operation of the Karun Basin reservoir system was another problem. With a minimum of 1441.71 objectives and an average annual hydropower energy manufacturing of 17,166.47 GW, the MOAHA algorithm demonstrated considerable ability compared to the other two. The final results demonstrated the MOAHA algorithm’s excellent performance, particularly in difficult and significant problems such as multi-reservoir systems' optimal operation under various objectives.

Publisher

Springer Science and Business Media LLC

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3