How do we identify flash droughts? A case study in Central European Croplands

Author:

Alencar Pedro Henrique Lima12ORCID,Paton Eva Nora1ORCID

Affiliation:

1. a Ecohydrology and Landscape Evaluation, Institute of Ecology, Technical University of Berlin, Berlin, Germany

2. b Agricultural Engineering, Agricultural Sciences, Federal University of Ceará, Benfica, Fortaleza, Brazil

Abstract

Abstract Many definitions and delineation methods exist for identifying flash droughts (FDs), which are events of rapid and unusual large depletion of root-zone soil moisture, in comparison to average moisture conditions, due to climatic compound conditions over a short period of several weeks. Six FD identification methods were compared to analyse their functioning using data from several experimental cropland sites across Central Europe. Co- and misidentification of the FD time series were assessed using confusion and synchronicity metrics on a local scale. Even though a large degree of synchronicity of individual FD events was observed, some divergence in drought periods was detected, which was related to four intrinsic differences in the underlying FD definitions: (1) type of critical variable; (2) velocity of drought intensification; (3) pre-set threshold values for final depletion and/or (4) minimum length of the duration of FDs. To balance the strengths and weaknesses of those methods that are not based on soil moisture, we suggest using an ensemble approach for event identification, which is validated in this study for the temperate central European region. In doing so, the current unclearly defined sub-types of FDs can be detected, regardless of the different combinations of compound drivers and differences in intensification dynamics. All methods were implemented in an R package and are available as a Shiny app for the public.

Funder

DAAD

CAPES

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3