The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation

Author:

Chicco DavideORCID,Tötsch Niklas,Jurman Giuseppe

Abstract

AbstractEvaluating binary classifications is a pivotal task in statistics and machine learning, because it can influence decisions in multiple areas, including for example prognosis or therapies of patients in critical conditions. The scientific community has not agreed on a general-purpose statistical indicator for evaluating two-class confusion matrices (having true positives, true negatives, false positives, and false negatives) yet, even if advantages of the Matthews correlation coefficient (MCC) over accuracy and F1score have already been shown.In this manuscript, we reaffirm that MCC is a robust metric that summarizes the classifier performance in a single value, if positive and negative cases are of equal importance. We compare MCC to other metrics which value positive and negative cases equally: balanced accuracy (BA), bookmaker informedness (BM), and markedness (MK). We explain the mathematical relationships between MCC and these indicators, then show some use cases and a bioinformatics scenario where these metrics disagree and where MCC generates a more informative response.Additionally, we describe three exceptions where BM can be more appropriate: analyzing classifications where dataset prevalence is unrepresentative, comparing classifiers on different datasets, and assessing the random guessing level of a classifier. Except in these cases, we believe that MCC is the most informative among the single metrics discussed, and suggest it as standard measure for scientists of all fields. A Matthews correlation coefficient close to +1, in fact, means having high values for all the other confusion matrix metrics. The same cannot be said for balanced accuracy, markedness, bookmaker informedness, accuracy and F1score.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

Reference69 articles.

1. Luca O. Model Selection and Error Estimation in a Nutshell. Berlin: Springer; 2020.

2. Naser MZ, Alavi A. Insights into performance fitness and error metrics for machine learning. 2020:1–25. arXiv preprint arXiv:2006.00887.

3. Wei Q, Dunbrack Jr. RL. The role of balanced training and testing data sets for binary classifiers in bioinformatics. PLoS ONE. 2013; 8(7):e67863.

4. Bekkar M, Djemaa HK, Alitouche TA. Evaluation measures for models assessment over imbalanced data sets. J Inf Eng Appl. 2013; 3(10):27–38.

5. Ramola R, Jain S, Radivojac P. Estimating classification accuracy in positive-unlabeled learning: characterization and correction strategies. In: Proceedings of Pacific Symposium on Biocomputing 2019. Singapore: World Scientific: 2019. p. 124–35.

Cited by 467 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3