Mid- to long-term runoff prediction by combining the deep belief network and partial least-squares regression

Author:

Yue Zhaoxin1,Ai Ping2,Xiong Chuansheng2,Hong Min2,Song Yanhong1

Affiliation:

1. College of Computer and Information Engineering, Hohai University, Nanjing 211100, China

2. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

Abstract

Abstract Data representation and prediction model design play an important role in mid- to long-term runoff prediction. However, it is challenging to extract key factors that accurately characterize the changes in the runoff of a river basin because of the complex nature of the runoff process. In addition, the low accuracy is another problem for mid- to long-term runoff prediction. With an aim to solve these problems, two improvements are proposed in this paper. First, the partial mutual information (PMI)-based approach was employed for estimating the importance of various factors. Second, a deep learning architecture was introduced by using the deep belief network (DBN) with partial least-squares regression (PLSR), together denoted as PDBN, for mid- to long-term runoff prediction, which solves the problem of parameter optimization for the DBN using PLSR. The novelty of the proposed method lies in the key factor selection and a novel forecasting method for mid- to long-term runoff. Experimental results demonstrated that the proposed method can significantly improve the effect of mid- to long-term runoff prediction. Also, compared with the results obtained by current state-of-the-art prediction methods, i.e., DBN, backpropagation neural networks, and support vector machine models, our prediction results demonstrate the performance of the proposed method.

Funder

Fundamental Research Funds for Central Universities of the Central South University

National Natural Science Foundation of China

the Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3