Big data and hydroinformatics

Author:

Chen Yiheng,Han Dawei

Abstract

Big data is popular in the areas of computer science, commerce and bioinformatics, but is in an early stage in hydroinformatics. Big data is originated from the extremely large datasets that cannot be processed in tolerable elapsed time with the traditional data processing methods. Using the analogy from the object-oriented programming, big data should be considered as objects encompassing the data, its characteristics and the processing methods. Hydroinformatics can benefit from the big data technology with newly emerged data, techniques and analytical tools to handle large datasets, from which creative ideas and new values could be mined. This paper provides a timely review on big data with its relevance to hydroinformatics. A further exploration on precipitation big data is discussed because estimation of precipitation is an important part of hydrology for managing floods and droughts, and understanding the global water cycle. It is promising that fusion of precipitation data from remote sensing, weather radar, rain gauge and numerical weather modelling could be achieved by parallel computing and distributed data storage, which will trigger a leap in precipitation estimation as the available data from multiple sources could be fused to generate a better product than those from single sources.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference63 articles.

1. Introducing hydroinformatics;Abbott,1999

2. Hadoop MapReduce for remote sensing image analysis;Almeer;Int. J. Emerg. Technol. Adv. Eng.,2012

3. Estimating climatic-scale precipitation from space: a review;Arkin;J. Climate,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3