Reproducibility Starts at the Source: R, Python, and Julia Packages for Retrieving USGS Hydrologic Data

Author:

Hodson Timothy O.1ORCID,DeCicco Laura A.2ORCID,Hariharan Jayaram A.3ORCID,Stanish Lee F.3ORCID,Black Scott4ORCID,Horsburgh Jeffery S.5ORCID

Affiliation:

1. U.S. Geological Survey Central Midwest Water Science Center, Urbana, IL 61801, USA

2. U.S. Geological Survey Upper Midwest Water Science Center, Madison, WI 53726, USA

3. U.S. Geological Survey Water Mission Area, Reston, VA 20192, USA

4. Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), Arlington, MA 02476, USA

5. Civil and Environmental Enginnering, Utah State University, Logan, UT 84322, USA

Abstract

Much of modern science takes place in a computational environment, and, increasingly, that environment is programmed using R, Python, or Julia. Furthermore, most scientific data now live on the cloud, so the first step in many workflows is to query a cloud database and load the response into a computational environment for further analysis. Thus, tools that facilitate programmatic data retrieval represent a critical component in reproducible scientific workflows. Earth science is no different in this regard. To fulfill that basic need, we developed R, Python, and Julia packages providing programmatic access to the U.S. Geological Survey’s National Water Information System database and the multi-agency Water Quality Portal. Together, these packages create a common interface for retrieving hydrologic data in the Jupyter ecosystem, which is widely used in water research, operations, and teaching. Source code, documentation, and tutorials for the packages are available on GitHub. Users can go there to learn, raise issues, or contribute improvements within a single platform, which helps foster better engagement and collaboration between data providers and their users.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference28 articles.

1. U.S. Geological Survey (2023, December 05). National Water Information System Data Available on the World Wide Web (USGS Water Data for the Nation), Available online: https://waterdata.usgs.gov/nwis.

2. A first approach to web services for the National Water Information System;Goodall;Environ. Model. Softw.,2008

3. Data visualization and analysis within a Hydrologic Information System: Integrating with the R statistical computing environment;Horsburgh;Environ. Model. Softw.,2014

4. HydroDesktop: Web services-based software for hydrologic data discovery, download, visualization, and analysis;Ames;Environ. Model. Softw.,2012

5. WaterML R package for managing ecological experiment data on a CUAHSI HydroServer;Kadlec;Ecol. Inform.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3