Comparative Analysis of Satellite-Based Precipitation Data across the CONUS and Hawaii: Identifying Optimal Satellite Performance

Author:

Bhattarai Saurav1,Talchabhadel Rocky1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS 39217, USA

Abstract

Accurate precipitation estimates are crucial for various hydrological and environmental applications. This study presents a comprehensive evaluation of three widely used satellite-based precipitation datasets (SPDs)—PERSIANN, CHIRPS, and MERRA—and a monthly reanalysis dataset—TERRA—that include data from across the contiguous United States (CONUS) and Hawaii, at daily, monthly, and yearly timescales. We present the performance of these SPDs using ground-based observations maintained by the USGS (United States Geological Survey). We employ evaluation metrics, such as the coefficient of determination (R2), root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE), to identify optimal SPDs. Our findings reveal that MERRA outperforms PERSIANN and CHIRPS on a daily scale, while CHIRPS is the best-performing dataset on a monthly scale. However, all datasets show limitations in accurately estimating absolute amount of precipitation totals. The spatial analysis highlights regional variations in the datasets’ performance, with MERRA consistently performing well across most regions, while CHIRPS and PERSIANN show strengths in specific areas and months. We also observe a consistent seasonal pattern in the performance of all datasets. This study contributes to the growing body of knowledge on satellite precipitation estimates and their applications, guiding the selection of suitable datasets based on the required temporal resolution and regional context. As such SPDs continue to evolve, ongoing evaluation and improvement efforts are crucial to enhance their reliability and support informed decision-making in various fields, including water resource management, agricultural planning, and climate studies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3