Runoff Prediction in the Xijiang River Basin Based on Long Short-Term Memory with Variant Models and Its Interpretable Analysis

Author:

Tian Qingqing12,Gao Hang2,Tian Yu1,Jiang Yunzhong1,Li Zexuan2,Guo Lei34

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

3. Henan Water Conservancy Investment Group Co., Ltd., Zhengzhou 450002, China

4. Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450002, China

Abstract

The Long Short-Term Memory (LSTM) neural network model is an effective deep learning approach for predicting streamflow, and the investigation of the interpretability of deep learning models in streamflow prediction is of great significance for model transfer and improvement. In this study, four key hydrological stations in the Xijiang River Basin (XJB) in South China are taken as examples, and the performance of the LSTM model and its variant models in runoff prediction were evaluated under the same foresight period, and the impacts of different foresight periods on the prediction results were investigated based on the SHapley Additive exPlanations (SHAP) method to explore the interpretability of the LSTM model in runoff prediction. The results showed that (1) LSTM was the optimal model among the four models in the XJB; (2) the predicted results of the LSTM model decreased with the increase in foresight period, with the Nash–Sutcliffe efficiency coefficient (NSE) decreasing by 4.7% when the foresight period increased from one month to two months, and decreasing by 3.9% when the foresight period increased from two months to three months; (3) historical runoff had the greatest impact on streamflow prediction, followed by precipitation, evaporation, and the North Pacific Index (NPI); except evaporation, all the others were positively correlated. The results can provide a reference for monthly runoff prediction in the XJB.

Funder

National Key Research and Development Program of China

Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research

Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3