Partially esterified oligogalacturonides are the preferred substrates for pectin methylesterase of Aspergillus niger

Author:

van ALEBEEK Gert-Jan W. M.1,van SCHERPENZEEL Katrien1,BELDMAN Gerrit1,SCHOLS Henk A.1,VORAGEN Alphons G. J.1

Affiliation:

1. Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands

Abstract

Investigations on the mode of action of Aspergillus niger pectin methylesterase (PME) towards differently C6- and C1-substituted oligogalacturonides (oligoGalpA) are described. De-esterification of methyl-esterified (un)saturated oligoGalpA proceeds via a specific pattern, depending on the degree of polymerization. Initially, a first methyl ester of the oligomer is hydrolysed, resulting in one free carboxyl group. Subsequently, this first product is preferred as a substrate and is de-esterified for a second time. This product is then accumulated and hereafter de-esterified further to the final product, i.e. oligoGalpA containing one methyl ester located at the non-reducing end residue for both saturated and unsaturated oligoGalpA, as found by post-source decay matrix-assisted laser-desorption/ionization–time-of-flight MS. The saturated hexamer is an exception to this: three methyl esters are removed very rapidly, instead of two methyl esters. When unsaturated oligoGalpA were used, the formation of the end product differed slightly, suggesting that the unsaturated bond at the non-reducing end influences the de-esterification process. In vivo, PME prefers methyl esters, but the enzyme appeared to be tolerant for other C6- and C1-substituents. Changing the type of ester (ethyl esterification) or addition of a methyl glycoside (C1) only reduced the activity or had no effect respectively. The specific product pattern was identical for all methyl- and ethyl-esterified oligoGalpA and methyl-glycosidated oligoGalpA, which strongly indicates that one or perhaps two non-esterified oligoGalpA are preferred in the active-site cleft.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3