Laboratory experimental study of contact interaction between cut shells and resilient bodies

Author:

Velychkovych A.,Bedzir O.,Shopa V.

Abstract

The study presented herein describes promising designs of shell vibration isolators. The feature of the proposed designs is the cut thin-walled shell usage as the main bearing link. These resilient elements have high load capacity and, on the other hand, can provide the desired level of damping. From the point of view of mechanics, shell resilient elements are considered as the deformable systems with dry friction. When simulating these systems, structurally nonlinear non-conservative mixed contact issues of cut shell – resilient body frictional interaction arise. In order to take into account all essential options of the aforementioned issues and specify shell resilient element peculiarities of behavior under operational loads, the authors used the method of laboratory experiments for research. We considered two different contact systems. The first one is a cylindrical shell cut along its generatrix, which contacts a deformable filler. The second system is a cylindrical shell with several incomplete slots interacting with the elastic filler. The stress state and radial displacements of the shells, pliability of the resilient elements, and energy dissipation in the contact systems were time-tracked. As a result, we obtained relations for monitored options of the contact bodies and deformation diagrams for different physical-mechanical and geometrical options of the systems It was found that for a fixed cycle asymmetry coefficient with an increase in the friction coefficient between the shell and the filler, the amount of energy dissipated per cycle gradually decreases. The idea of optimizing shell vibration protection devices according to the criterion of maximum absorption of energy from external influences by determining the required tribological properties of contacting pairs is declared.

Publisher

Growing Science

Subject

Metals and Alloys,Polymers and Plastics,Mechanics of Materials,Civil and Structural Engineering,Ceramics and Composites

Reference1 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3