Abstract
The issue of choosing the method for optimal surgical treatment of a broken fibula has been debatable for many years. At the same time, concomitant repair of tibiofibular syndesmosis injuries does not have a unified approach. It has been determined that osteosynthesis of broken shin bones with syndesmosis injury should combine stable fixation of the broken bone and should not limit the elastic properties of the syndesmosis. In case of a broken fibula, it is recommended to use a stable extracortical fixator and an elastic connection of the syndesmosis injury using a tightrope. An analytical model of the broken fibula, which is blocked with an extracortical fixator metal plate and elastically fixed with a tightrope, has been developed. The research object is the stress–strain state of the “broken fibula–extracortical titanium plate” composition under the action of tightrope tightening fixation. The main research result is an analytical dependence, which makes it possible to determine the permissible value of the tightrope tightening force for elastic fixation of the tibiofibular syndesmosis. The research results have been tested numerically, and the influence of the parameters of plate, bone and damage localization on the permissible value of the tightrope tightening force has been analyzed. By using the rational tightrope tightening force with stable–elastic fixation of the broken shin, it is possible to reduce the time before the start of loading on the injured extremity and accelerate the functional recovery of the patient.
Funder
Guangdong University of Petrochemical Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献