Efficient Model of the Interaction of Elastomeric Filler with an Open Shell and a Chrome-Plated Shaft in a Dry Friction Damper

Author:

Dutkiewicz MaciejORCID,Velychkovych AndriiORCID,Shatskyi Ivan,Shopa Vasyl

Abstract

The results of a study of the contact interaction of an open shell and a chrome-plated shaft with elastomeric filler installed coaxially are presented. The considered contact system is a model of the original design of the shell damper of dry friction. The design feature is the following: the bearing link of the damper is a thin-walled cylindrical shell with a cut along the generatrix; the working body of the damper is elastomeric filler; a hollow chrome-plated shaft centers the damper elements and allows it to be used in technological processes with the presence of aggressive and abrasive-containing media. The mechanical-mathematical modeling of the behavior of the presented damper under the conditions of operational loads has been carried out. The idea of identifying the properties of a cut isotropic shell, which bends under the conditions of a nonaxisymmetric contact load, and a strongly orthotropic continuous shell is applied. As a result, dependences were obtained to determine the rigidity and the maximum allowable load of the damper. The effect of the coefficient of friction of the contact pairs elastomer-shell and elastomer-shaft on the damper performance properties has been studied. A technique for the quasi-static analysis of structural damping in non-mobile, non-conservative shell systems with deforming filler has been developed. The hysteresis loops of the damper under a nonmonotonic load are constructed, the dependence of the amount of dissipated energy on the cycle asymmetry coefficient is found. An analysis of the results obtained showed that the use of open shells in friction shock absorbers can significantly reduce their rigidity compared to solid shells and thereby reduce the resonant frequencies of the dynamic system. This circumstance makes such vibration isolators particularly attractive for use in superresonance vibrators as working modules of drilling shock absorbers and elastic hangers of sucker rods in oil and gas production.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3