The Role of Stress–Strain State of Gas Turbine Engine Metal Parts in Predicting Their Safe Life

Author:

Duriagina Z. A.,Kulyk V. V.,Filimonov O. S.,Trostianchyn A. M.,Sokulska N. B.

Abstract

The influence of various factors on the workability of critical metallic parts of a gas turbine engine (GTE) is analysed and systematized. As shown, compressor blades fail as a result of foreign-objects’ damage, gas corrosion, and erosion. Compressor blade roots in most cases fail due to fretting wear caused by vibrations, while the fir-tree rim of turbine discs fails due to low-cycle fatigue (LCF) damage and creep. An increase in the radial gaps between the rotor and stator of the turbine reduces the thrust force and causes changes in the gas-dynamic loading of the engine components. Additional oxidation of metal parts is observed under the action of hot gases from the combustion chamber. The principles of material selection for manufacturing turbine blades and disks, concepts of alloying heat-resistant alloys, and modern methods of surface engineering due to applying protective oxidation-resistant coatings, in particular, chemical vapour deposition (CDV), physical vapour deposition (PVD), air plasma spraying (APS), etc., are also described. To predict the lifetime of turbine disks, it is proposed to use the modified Walker model and Miner’s rule. To specify the time before the failure of the metal blades of the turbine, it is proposed to use the finite element method. To monitor the working-surfaces’ deformations of the gas turbine engine, it is recommended to use optical-digital methods.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Metals and Alloys,Surfaces, Coatings and Films,Fluid Flow and Transfer Processes,Condensed Matter Physics,Materials Science (miscellaneous),Electronic, Optical and Magnetic Materials

Reference132 articles.

1. T. Nada, Propul. Pow. Res., 3, No. 3: 121 (2014); https://doi.org/10.1016/j.jppr.2014.07.005

2. W. Obrocki, A. Setkowicz, M. Masłyk, and J. Sieniawski, Adv. Manuf. Sci. Tech., 3, No. 2: 43 (2017); http://advancesmst.prz.edu.pl/pdfy/10264-Volume41-Issue2-paper_04.pdf.

3. W. Obrocki, A. Setkowicz, M. Masłyk, and J. Sieniawski, Adv. Manuf. Sci. Tech., 41, No. 3: 47 (2017); http://advancesmst.prz.edu.pl/pdfy/10264-Volume41-Issue3-paper_05.pdf .

4. Yu. Molkov, Ya. Ivanyts'kyi, T. Lenkovs'kyi , A. Trostianchyn, V. Kulyk, and R. Shyshkovskyy, Ukr. Jour. Mech. Eng. Mat. Sci., 5, No. 1: 39 (2019) 5/1 (2019); https://doi.org/10.23939/ujmems2019.01.039

5. S.I. Ryabtsev, V.А. Polonskyy, and О.V. Sukhova, Powder Metall. Met. Ceram., 58, Nos. 9-10: 567 (2020); https://doi.org/10.1007/s11106-020-00111-2

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3