Determination of the modern marine single shaft gas turbine rotor blades fatigue strength parameters

Author:

Smetankina Natalia1ORCID,Morhun Serhii2ORCID

Affiliation:

1. Anatolii Pidgornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine , Kharkiv , Ukraine

2. Admiral Makarov National University of Shipbuilding , Mykolayiv , Ukraine

Abstract

Abstract In this paper the problem of the gas turbine blades equivalent dynamic stresses and lifetime determination has been studied. The obtained numerical results have been experimentally verified. The equivalent stresses and the lifetime have been determined for the most dangerous forced vibration bending and torsion modes of all three impellers, forming the turbine rotor. The marine gas turbine engine should be as compact as possible. Thus its rotor consists only of three impellers, that causes rather high vibration and thermal loads on the rotor blades. The lowest number of cycles before the blades failure have been observed for blades of the first impeller, that are influenced by the strongest thermal and vibration loads. Obtained results show that for the surface temperature of nearly 1,000 °C the maximum equivalent stresses are approximately equal to the blade material endurance limit. All numerical results are in good correlation with the experimental data, the divergence is less than 7 %. Received results can be used for the next stage of studies, concerning the rotor creep and fatigue crack problems.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3