Comparison of six regression-based lot-to-lot verification approaches

Author:

Koh Norman Wen Xuan1,Markus Corey2ORCID,Loh Tze Ping3,Lim Chun Yee1

Affiliation:

1. Engineering Cluster , Singapore Institute of Technology , Singapore , Singapore

2. Department of Chemical Pathology, New South Wales Health Pathology , Prince of Wales Hospital , Sydney , Australia

3. Department of Laboratory Medicine , National University Hospital , Singapore , Singapore

Abstract

Abstract Objectives Detection of between-lot reagent bias is clinically important and can be assessed by application of regression-based statistics on several paired measurements obtained from the existing and new candidate lot. Here, the bias detection capability of six regression-based lot-to-lot reagent verification assessments, including an extension of the Bland–Altman with regression approach are compared. Methods Least squares and Deming regression (in both weighted and unweighted forms), confidence ellipses and Bland–Altman with regression (BA-R) approaches were investigated. The numerical simulation included permutations of the following parameters: differing result range ratios (upper:lower measurement limits), levels of significance (alpha), constant and proportional biases, analytical coefficients of variation (CV), and numbers of replicates and sample sizes. The sample concentrations simulated were drawn from a uniformly distributed concentration range. Results At a low range ratio (1:10, CV 3%), the BA-R performed the best, albeit with a higher false rejection rate and closely followed by weighted regression approaches. At larger range ratios (1:1,000, CV 3%), the BA-R performed poorly and weighted regression approaches performed the best. At higher assay imprecision (CV 10%), all six approaches performed poorly with bias detection rates <50%. A lower alpha reduced the false rejection rate, while greater sample numbers and replicates improved bias detection. Conclusions When performing reagent lot verification, laboratories need to finely balance the false rejection rate (selecting an appropriate alpha) with the power of bias detection (appropriate statistical approach to match assay performance characteristics) and operational considerations (number of clinical samples and replicates, not having alternate reagent lot).

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linearity assessment: deviation from linearity and residual of linear regression approaches;Clinical Chemistry and Laboratory Medicine (CCLM);2024-07-19

2. Identification of Possible Estimates Areas for Parameters of Fully connected Linear Regression Models;Моделирование и анализ данных;2023-10-03

3. Difference- and regression-based approaches for detection of bias;Clinical Biochemistry;2023-04

4. Lot-to-lot difference: a new approach to evaluate regression studies;Scandinavian Journal of Clinical and Laboratory Investigation;2022-12-15

5. Lot-to-lot variation and verification;Clinical Chemistry and Laboratory Medicine (CCLM);2022-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3