Identification of Possible Estimates Areas for Parameters of Fully connected Linear Regression Models

Author:

Bazilevskiy M.P.1ORCID

Affiliation:

1. Irkutsk State Transport University (ISTU)

Abstract

<p>This article is devoted to the study of fully connected linear regression models, in which the observed variables contain errors, and the pairs of true variables are interconnected by linear functional dependencies. When estimating fully connected regressions, the main problem is the correct choice of the error variances ratios of the variables. If the choice is made incorrectly, then the fully connected regression estimates will be biased. The purpose of this article is to find the dependence of main parameters possible estimates areas on the possible error variances ratios of the variables in fully connected regressions. For the first time, with the help of matrix algebra elements, the inverse problem is solved - analytical dependences of the error variances ratios of variables on the main parameters are obtained. These dependences make it possible to identify the parameters possible estimates areas in which the necessary condition for the extremum of the objective function is satisfied. It is proved that, under certain conditions, for any error variances ratios of the variables, the parameters estimates always lie inside an open convex polygon located only in one of the orthants of the multidimensional space. In this case, the signs of the estimates always agree with the signs of the corresponding correlation coefficients. A numerical experiment was carried out, confirming the correctness of the results obtained.</p>

Publisher

Moscow State University of Psychology and Education

Subject

Polymers and Plastics,General Environmental Science

Reference10 articles.

1. Montgomery D.C., Peck E.A., Vining G.G. Introduction to linear regression analysis. John Wiley & Sons, 2021.

2. Xu P. Improving the weighted least squares estimation of parameters in errors-in-variables models, Journal of the Franklin Institute, 2019, vol. 356, no. 15, pp. 8785–8802. DOI:10.1016/j.jfranklin.2019.06.016

3. Demidenko E.Z. Lineynaya i nelineynaya regressii [Linear and nonlinear regressions]. Moscow, Finansy i statistika, 1981. 304 p.

4. Golub G.H., Van Loan C.F. An analysis of the total least squares problem, SIAM Journal on Numerical Analysis, 1980, vol. 17, no. 6, pp. 883–893.

5. Bazilevskiy M.P. Metody postroeniya regressionnykh modeley s oshibkami vo vsekh peremennykh [Methods for constructing errors-in-variables regression models]. Irkutsk, IrGUPS, 2019. 208 p.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical Modeling Using Multiple and Fully-Connected Linear Regressions;System Analysis & Mathematical Modeling;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3