Sparse latent factor regression models for genome-wide and epigenome-wide association studies

Author:

Jumentier Basile12,Caye Kevin1,Heude Barbara3,Lepeule Johanna2,François Olivier14ORCID

Affiliation:

1. Centre National de la Recherche Scientifique, Grenoble INP, TIMC-IMAG CNRS UMR 5525 , Université Grenoble-Alpes , Grenoble , 38000 , France

2. Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309 , Université Grenoble-Alpes , Grenoble , 38000 , France

3. Institut National de la Santé et de la Recherche Médicale, Centre of Research in Epidemiology and Statistics, INSERM UMR 1153 , Université de Paris , F75004 Paris , France

4. Inria Grenoble, Equipe Statify , Laboratoire Jean Kuntzmann , Rhône-Alpes Inovallée 655 Avenue de l’Europe - CS 90051 , Montbonnot , 38334 , France

Abstract

Abstract Association of phenotypes or exposures with genomic and epigenomic data faces important statistical challenges. One of these challenges is to account for variation due to unobserved confounding factors, such as individual ancestry or cell-type composition in tissues. This issue can be addressed with penalized latent factor regression models, where penalties are introduced to cope with high dimension in the data. If a relatively small proportion of genomic or epigenomic markers correlate with the variable of interest, sparsity penalties may help to capture the relevant associations, but the improvement over non-sparse approaches has not been fully evaluated yet. Here, we present least-squares algorithms that jointly estimate effect sizes and confounding factors in sparse latent factor regression models. In simulated data, sparse latent factor regression models generally achieved higher statistical performance than other sparse methods, including the least absolute shrinkage and selection operator and a Bayesian sparse linear mixed model. In generative model simulations, statistical performance was slightly lower (while being comparable) to non-sparse methods, but in simulations based on empirical data, sparse latent factor regression models were more robust to departure from the model than the non-sparse approaches. We applied sparse latent factor regression models to a genome-wide association study of a flowering trait for the plant Arabidopsis thaliana and to an epigenome-wide association study of smoking status in pregnant women. For both applications, sparse latent factor regression models facilitated the estimation of non-null effect sizes while overcoming multiple testing issues. The results were not only consistent with previous discoveries, but they also pinpointed new genes with functional annotations relevant to each application.

Funder

Agence Nationale de la Recherche

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3