Geographic and seasonal variation of the for gene reveal signatures of local adaptation in Drosophila melanogaster

Author:

Padilla Perez Dylan J1ORCID

Affiliation:

1. School of Life Sciences, Arizona State University , Tempe, AZ , United States

Abstract

Abstract In the early 1980s, the observation that Drosophila melanogaster larvae differed in their foraging behaviour laid the foundation for the work that would later lead to the discovery of the foraging gene (for) and its associated foraging phenotypes, rover and sitter. Since then, the molecular characterization of the for gene and our understanding of the mechanisms that maintain its phenotypic variants in the laboratory have progressed enormously. However, the significance and dynamics of such variation are yet to be investigated in nature. With the advent of next-generation sequencing, it is now possible to identify loci underlying the adaptation of populations in response to environmental variation. Here, I present the results of a genotype–environment association analysis that quantifies variation at the for gene among samples of D. melanogaster structured across space and time. These samples consist of published genomes of adult flies collected worldwide, and at least twice per site of collection (during spring and fall). Both an analysis of genetic differentiation based on Fs⁢t values and an analysis of population structure revealed an east–west gradient in allele frequency. This gradient may be the result of spatially varying selection driven by the seasonality of precipitation. These results support the hypothesis that different patterns of gene flow as expected under models of isolation by distance and potentially isolation by environment are driving genetic differentiation among populations. Overall, this study is essential for understanding the mechanisms underlying the evolution of foraging behaviour in D. melanogaster.

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. Epigenetic mechanisms modulate differences in drosophila foraging behavior;Anreiter;Proceedings of the National Academy of Sciences of the United States of America,2017

2. The foraging gene and its behavioral effects: Pleiotropy and plasticity;Anreiter;Annual Review of Genetics,2019

3. Evolution in closely adjacent plant populations. VI. manifold effects of gene flow;Antonovics;Heredity,1968

4. A tutorial on statistical methods for population association studies;Balding;Nature Reviews Genetics,2006

5. Controlling the false discovery rate: A practical and powerful approach to multiple testing;Benjamini;Journal of the Royal Statistical Society B: Methodological,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3