Critical review of Ohmic and Schottky contacts to β-Ga2O3

Author:

Lyle Luke A. M.12ORCID

Affiliation:

1. Electronic Materials and Devices Department, Applied Research Lab, Pennsylvania State University, University Park, Pennsylvania 16802

2. Materials Science and Engineering Department, Pennsylvania State University, University Park, Pennsylvania 16801

Abstract

Over the last decade, beta-phase gallium oxide (β-Ga2O3) has developed an extensive interest for applications such as high-power electronics. Due to its ultrawide bandgap of ∼4.8 eV and predicted breakdown field of ∼8 MV/cm along with its ability to be grown from the melt, this material demonstrates immense promise for high-voltage switching. The pace of development for β-Ga2O3 over these past ten years has been rapid, and ample new information has been generated on metal/β-Ga2O3 interfaces. With the advent of high-quality melt-grown substrates and epitaxial layers, low ideality factors (<1.1) and high Schottky barrier heights (>2.2 eV) have been demonstrated for Schottky contacts. For Ohmic contacts, specific contact resistivities of the common Ti/Au metallization are routinely reported in the 10−5–10−6 Ω cm2 range. This critical and comprehensive review focuses on the fundamental physics of Ohmic and Schottky contacts to bulk and epitaxial β-Ga2O3 in the published literature. It centers on the influence of surface treatments and defects on electrical contacts, Ohmic contacts, and Schottky contacts to β-Ga2O3. Native upward band bending is observed on β-Ga2O3, and the influence of wet and dry etching on band bending along with Schottky barrier height and ideality factor is discussed. Work on Ohmic contacts concentrates on the conventional Ti/Au anneal but additional Ohmic metallizations such as conductive oxides and others are treated as well. Schottky contacts are examined with specific focus on Fermi level pinning, thermal stability of Schottky metallizations, and Schottky barrier inhomogeneity.

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3