Low temperature plasma-enhanced atomic layer deposition of sodium phosphorus oxynitride with tunable nitrogen content

Author:

Fontecha Daniela1ORCID,Nuwayhid R. Blake1ORCID,Kozen Alexander C.1ORCID,Stewart David M.1ORCID,Rubloff Gary W.12ORCID,Gregorczyk Keith E.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742

2. Institute for Systems Research and the Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742

Abstract

Atomic layer deposition (ALD) is a key technique in processing new materials compatible with complex architectures. While the processing space for Li-containing ALD thin films has been relatively well explored recently, the space for other alkali metal thin films (e.g., Na) is more limited. Thermal ALD and plasma-enhanced ALD (PEALD) lithium phosphorus oxynitride [Kozen et al., Chem. Mater. 27, 5324 (2015); Pearse et al., Chem. Mater. 29, 3740 (2017)] processes as well as analogous thermal sodium phosphorus oxynitride (NaPON) (Ref. 13) have been previously developed as conformal ALD solid state electrolytes. The main difference between the Na and Li processes is the alkali tert-butoxide precursor (AOtBu, A = Li, Na). One would expect such an isoelectronic substitution with precursors that have similar structure and properties to correlate with a similarly behaved ALD process. However, this work demonstrates that the PEALD NaPON process unexpectedly behaves quite differently from its Li counterpart, introducing some insight into the development of Na-containing thin films. In this work, we demonstrate process development and characterization of an analogous low temperature (250 °C) PEALD of NaPON. This process demonstrates significant tunability of N coordination states by varying plasma nitrogen exposure time. Electrochemical characterization showed an ionic conductivity of 8.2 × 10−9 S/cm at 80 °C and activation energy of 1.03 eV. This first instance of low temperature NaPON deposition by PEALD shows promise for further development and understanding of more versatile processing of Na thin film materials.

Funder

U.S.-Israel Binational Indsutrial Research and Development Foundation

National Science Foundation Graduate Research Fellowship Program

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3