Reactive plasma sputtering deposition of polycrystalline GaN thin films on silicon substrates at room temperature

Author:

Srinivasan Lakshman12ORCID,Jadaud Cyril1ORCID,Silva François1ORCID,Vanel Jean-Charles1ORCID,Maurice Jean-Luc1ORCID,Johnson Erik1ORCID,Roca i Cabarrocas Pere12ORCID,Ouaras Karim1ORCID

Affiliation:

1. LPICM, CNRS, Ecole polytechnique, Institut polytechnique de Paris 1 91120 Palaiseau France

2. IPVF, Institut Photovoltaïque d'Ile-de-France 2 , 18 Bd Thomas Gobert, 91120 Palaiseau, France

Abstract

We report on the successful growth of polycrystalline GaN thin films on Si (100) substrates at room temperature (without intentional heating) using radiofrequency reactive magnetron sputtering. We use Ar and N2 as the main sputtering and N-atom precursor gas sources, respectively, and a gallium cathode as the Ga-atom source. We focus here on studying the effect of working pressure, as it is found to be the parameter that plays the most influential role on the crystalline quality of the thin films in the investigated range (20–95 mTorr). The morphology, microstructure, and composition profile of the GaN thin films are analyzed using a set of ex situ solid-state characterization techniques. This study reveals that for process pressures below 50 mTorr, the resulting films possess an amorphous nature, while for process pressures above that they become polycrystalline. Most of the crystalline films are found to be nanostructured with grain sizes typically ranging from 10 to 30 nm in size. The highest growth rate of ∼ 2.9 Å/s is obtained for the deposition carried out at 50 mTorr. At this pressure, the films exhibit the best crystallinity with a dominant wurtzite hexagonal structure. The elemental distribution of Ga and N throughout the growth profile is uniform with a sharp interface at the substrate, demonstrating one of the interests in working at low temperatures to avoid melt-back etching, a destructive reaction between gallium and silicon, that usually takes place at high temperatures.

Funder

Agence Nationale de la Recherche

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3